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Abstract. The tunnelling conductance spectra of ferromagnet/PrOs4Sb12 junctions are theoretically inves-
tigated by using the Blonder-Tinkham-Klapwijk theory. Three pairs of possible candidate for the pairing
symmetry of superconducting energy gap of the recently discovered heavy-fermion unconventional su-
perconductor PrOs4Sb12 are chosen for calculation. We have studied the spin-polarization effect on the
conductance spectra, with respect to different strength of ferromagnetism of the ferromagnet and differ-
ent strength of the interface barrier. Moreover, we have discussed the influence of nodal structures of the
superconducting energy gap on the conductance spectra. Different features of the tunnelling conductance
spectra were got, which may serve as useful theoretical comparisons for future experiments.

PACS. 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects –
74.70.Tx Heavy-fermion superconductors – 74.20.Rp Pairing symmetries (other than s-wave)

1 Introduction

The recent discovery of superconductivity in cubic skut-
terudite PrOs4Sb12 (POS) has attracted considerable the-
oretical and experimental interests [1–9]. POS is a heavy
fermion and nonmagnetic compound with unconventional
superconductivity. It should be distinguished from the
other unconventional superconductors in that it has a non-
magnetic ground state of the localized f electrons in the
crystalline electric field [1,2]. On the other hand, it was
indicated that there are multiple superconducting phases
in this material, like in the uranium compounds as UPt3
and superfluid 3He. The heat capacity and the ther-
mal expansion measurements both show jumps at around
Tc1 = 1.85 K and Tc2 = 1.75 K in the absence of a mag-
netic field, indicating a possible novel feature of the super-
conducting state with double superconducting transition
of POS, i.e., high temperature (T < Tc1) phase (A phase)
and low temperature (T < Tc2) phase (B phase) [2–4].
Moreover, the thermal transport measurements in mag-
netic field rotated relative to the crystal axes demonstrate
that a novel change in the symmetry of the superconduct-
ing gap function occurs deep inside the superconducting
state, giving a clear indication that the gap function has
six point nodes at [100] and that equivalent to [100] di-
rections for the A phase (H > 0.75 T, T � Tc1), while
in the B phase (H < 0.75 T, T � Tc2) the number of
the point nodes decreases to four or two because of addi-
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tional symmetry breaking [8,9]. The heavy fermion behav-
ior of POS should be understood in light of the interaction
of the electric quadrupole moments of Pr3+, rather than
local magnetic moments as in the other heavy fermion
superconductors, with the conduction electrons [10,11].
POS may be the first superconductor whose Cooper pairs
are mediated neither by electron-phonon nor by magnetic
interactions.

Although as far there is no affirmative experimental
evidence for whether POS has spin-singlet or spin-triplet
pairing, the mechanism and the symmetry of the super-
conducting pairing have been studied in many theoretical
works and several candidates for the pairing potential were
proposed. In reference [8] the author using phenomenolog-
ical Ginzburg-Landau theory to discuss the two supercon-
ducting phases based on the cubic crystal symmetry Th,
where the gap function is considered for the spin-singlet
pairing case. For the high temperature phase it is consid-
ered to be strongly anisotropic s-wave state, while for the
low temperature phase it is considered to be anisotropic
s+id-wave state. At present, however, the pairing symme-
try of the superconducting energy gap, as well as whether
the superconductivity is of spin singlet or spin triplet pair-
ing, still remain unclear.

As we know tunnelling spectroscopy of superconduc-
tors is a useful tool and is widely used in probing the
superconducting pairing symmetry and the local den-
sity of state (LDOS) [12]. For example, zero-bias conduc-
tance peak (ZBCP) in tunnelling spectroscopy is a clear
signature of an anisotropic pairing in most unconventional
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superconductors, which is resulted from the fact that zero-
energy states are formed due to the interference between
incident and Andreev reflected quasiparticles, which may
experience pair potentials of opposite signs when the pair-
ing is anisotropic. Asano et al. have studied the tunnelling
conductance of normal metal/insulator/POS junctions for
both spin-singlet and spin-triplet pairing states [7]. They
found that the conductance is sensitive to the relation be-
tween the direction of the electric current and the position
of point nodes. Peak structures in the sub gap conductance
were got for spin-triplet pairing of the energy gap, which
show that POS may be a spin-triplet superconductor if
sub-gap conductance peak is observed in future experi-
ments. In the presence of exchange field, however, such as
in ferromagnet/superconductor junctions, the transport
of incident and Andreev reflected quasiparticles is spin-
dependent, and as a result the properties of the Andreev
reflection (AR) process, as well as the tunnelling conduc-
tance spectra, will be modified [12–17]. On the other hand,
spin-dependent tunnelling in ferromagnet/superconductor
junctions provides a possible way to determine the degree
of spin polarization in the ferromagnet [18,19]. The pur-
pose of the present paper is to study the spin-polarization
effects on the tunnelling conductance spectra of ferromag-
net/POS junctions, while only spin-singlet pairing poten-
tial of the POS is discussed. We will discuss the effects of
spin polarization of the ferromagnet, the interface barrier,
as well as the nodal structures of superconducting energy
gap of the POS, on the tunnelling conductance spectra of
such structures.

2 Model and formulation

The system under consideration is sketched in Figure 1a,
a ferromagnet (FM) and a POS connect at z = 0, and
the interface is assumed to be perfectly flat and is de-
scribed by a δ-type barrier V (r) = V0δ(z), while V0 = 0
and ∞ correspond to two limits of metallic and tunnel
junctions, respectively. The FM is described by an ef-
fective single-particle Hamiltonian for spin-polarized elec-
trons. Here we neglect the influence of the magnetization
of the FM on the orbital motion of the conduction elec-
tron for it is much smaller than that via the exchange
interaction. Our study is based on the Blonder-Tinkham-
Klapwijk (BTK) theory [20], which was first extended
to study spin-dependent electron transport in the case
of FM/conventional superconductor junctions by Jong
et al. [21] The behavior of quasiparticles in such struc-
tures is described by the Bogoliubov-de Gennes (BdG)
equation [22,23]. In the absence of spin-flip scattering, the
spin-dependent four-component BdG equation will be de-
coupled into two sets of (two-component) equations, one
for the spin-up electron and spin-down hole quasiparti-
cles (u↑(r), v↓(r)), and the other for (u↓(r), v↑(r)). The
BdG equation for (us(r), vs(r)) (s =↑ or ↓) can be given as

see equation (1) above

Fig. 1. Schematic illustrations of (a) FM/POS junction
structures and (b) quasiparticle tunnelling processes in such
structures.

where H0(r) = −(�2/2m)�2 +V (r)−EF , E is the quasi-
particle energy relative to the Fermi energy level EF .
ηs = 1 for s =↑ and −1 for s =↓, while s denotes
the opposite spin direction of s. In principle, owing to
the interplay between them near the interface, the su-
perconducting properties of the POS and the ferromag-
netic properties of the FM should be determined in a
self-consistent way. Here for simplicity we take both the
pair potential of the POS and the exchange energy of
the FM as step functions, ∆ss(R, k̂) = ∆ss(k̂)Θ(z) and
h(R) = h0Θ(−z), where∆ss(R, k̂) is the Fourier transfor-
mation of∆ss(R, rr), with R = (r+r′)/2 and rr = (r−r′)
are the center-of-mass and relative coordinates, respec-
tively. Θ(z) is the unit step function. In the weak coupling
theory, the superconducting pairing only occurs near the
Fermi surface, so approximately the wavevector is fixed
on the Fermi surface, i.e., |k| = kF , and k̂ = kF/kF is
a unit vector denotes the direction of the wave-vector,
k̂ = (cosφ sin θS , sinφ sin θS , cos θS). The pair potential of
spin-singlet superconductivity is given by

∆(k̂) = ∆(θS , φ) = id(k̂)σy (2)

where σy is the Pauli matrix. Several candidates of pair
potential are proposed for the spin-singlet superconduc-
tivity of the POS phenomenologically, which are compat-
ible to the observed nodal structure [7,8]. One possible
candidate is

d(k̂)1 =

{
∆0

3
2 (1 − k̂4

x − k̂4
y − k̂4

z) A phase
∆0(1 − k̂4

y − k̂4
z) B phase

(3)

with six ([±100], [0±10], [00±1]) point nodes for A phase
and four ([0 ± 10], [00 ± 1]) point nodes for B phase, re-
spectively. ∆0 is the amplitude of the pair potential at
zero temperature. A second possible candidate is

d(k̂)2 =

{
∆0(1 − k̂4

x − k̂4
y) A phase

∆0(1 − k̂4
y) B phase

(4)

which is a nodal hybrid pair potential structure with four
([±100], [0±10]) and two ([0±10]) point nodes, for A and
B phase, respectively. The above two candidates belong
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to the so-called anisotropic s-wave pairing state. Here it
should be noted that it is not limited to the above can-
didates which can give rise to six (or four or two) point
nodes. For example, a third candidate can be given as
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{
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where the A phase is a linear combination of three d-wave
gap function which has six point nodes, and the B phase
is an anisotropic s+ id-wave pairing state with two point
nodes on the Fermi surface in [0 ± 10] directions. The
d-wave component of the B phase breaks the cubic crys-
tal symmetry and the time reversal symmetry, and conse-
quently it is expected that a spontaneous magnetization
be observed by the µSR measurement [24].

Since translational invariance is satisfied in the inter-
face plane, so the momentum parallel to the interface,
k‖ = (kx, ky), is conserved, and the quasiparticle wave
function can be written as[

us(r)
vs(r)

]
= ψFM(POS)(z) exp(ik‖ · r‖) (6)

with

ψFM(z) =
(

1
0

)
eiks

zz + bss

(
1
0

)
e−iks

zz + ass

(
0
1

)
eiks

zz

(7)
for z ≤ 0,
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for z ≥ 0, where

ks
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√
2m(EF + ηsh0)/�2 cos θN

ks
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qz ≈
√
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are z-component wavevectors of electrons and holes in
the FM, and that of quasiparticles in the POS, with θN ,
θA, θS are injection and Andreev reflection angles in the
FM, and transmission angle in the POS, respectively, as
shown in Figure 1b. Here it is assumed that the effective
mass of quasiparticles and the Fermi energy in the FM are
equal to those in the POS. And

u2
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1
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v2
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2
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where d(k̂‖,±k̂z) = d(k̂‖(θS±, φ),±k̂z(θS±, φ)), which is
given by equations (3−5), with θS± = θS ∓ α, α is the

angle between the z-axis and the a-axis of the crystal, as
shown in Figure 1b, and

φ± = cos−1

[
d(k̂‖,±k̂z)

|d(k̂‖,±k̂z)|

]
(11)

are phases of the effective pair potentials experience by
the electron-like quasiparticles (ELQ) and hole-like quasi-
particles (HLQ) in the POS, respectively.

In the FM, wave vectors of electrons with different spin
direction, ks

F and ks
F , are not equal due to the presence

of the ferromagnetic exchange energy h0. Also, neither of
them is equal to that of the POS, kF . As we have pointed
out that the wave-vector components parallel to the in-
terface are assumed to remain unchanged in the reflec-
tion and transmission processes, i.e., they must satisfy the
condition: ks

F sin θN = ks
F sin θA = kF sin θS . As a result,

θN , θA, and θS differs from each other except when θN

equals zero. For example, since k↑F > kF > k↓F , we have
θN < θS < θA for the incident electrons with spin up, as
sketched in Figure 1b. In this case, a virtual Andreev re-
flection process will occur if θN > sin−1(k↓F /k

↑
F ), therefore

the z-component of the wavevector in the Andreev reflec-
tion process becomes purely imaginary and as a result the
Andreev-reflected quasiparticles do not propagate. Fur-
thermore, the z-component of the wavevector in either
ELQ or HLQ transmission also becomes purely imaginary
when θN > sin−1(kF /k

↑
F ), and as a result a total reflection

occurs and the net current from the FM to the POS van-
ishes. There is an opposite result, θN < θS < θA, for the
incident electrons with spin down. In this case, neither
virtual AR nor total reflection processes can take place.
By matching the boundary conditions at z = 0 [20]

ΨFM(z = 0) = ΨPOS(z = 0) (12)

dΨPOS(r)
dz

|z=0 − dΨFM(r)
dz

|z=0 =
2mV0

�2
ΨFM |z=0 (13)

we obtain the coefficients of the normal reflection bss and
the Andreev reflection ass as

bss =
2ks

z(v+/u−)(qz + qz)e−iφ+

D
(14)

see equation (15) above

where D = κ(ks
z − qz + 2iqzZ)(ks

z − qz − 2iqzZ) − (ks
z +

qz + 2iqzZ)(ks
z + qz − 2iqzZ), κ = v+v− exp[−i(φ+ −

φ−)]/u+u−, Z = Z0/ cos θS with Z0 = 2mV0/�
2kF is a

dimensionless parameter describing barrier strength of the
interface. The tunnelling conductance of the junctions can
be obtained by extending the BTK formula to include the
effects of spin-dependent transport. For spin-s electrons
incident we got

Ĝs = Re
[
1 +

ks
z

ks
z

|ass|2 − |bss|2
]

(16)
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Fig. 2. Normalized tunnelling conductance of FM/POS junctions as a function of the quasiparticle energy, E/∆0. Pair potential

of the POS is d(k̂)1. (a) For different values of P , P = 0 (solid), 0.5 (dash), 0.8 (dot), 0.999 (dot dash), respectively, with Z0 = 0.
(b) For different values of Z0, Z0 = 0 (solid), 2 (dash), 5 (dot), with P = 0. In both (a) and (b), the left and the right columns
correspond to the high temperature and low temperature phases, while the upper and low panel correspond to α = 0 and
α = π/4, respectively.

The total conductance is given by

G=
∫ 2π

0

dφ

∫ π/2

0

dθN sin θN

[
Ĝ↑k

↑
Fz

1 + P

2
+Ĝ↓k

↓
Fz

1 − P

2

]
(17)

where P = h0/EF is the spin polarization rate of the
FM. Here we should define a normalization factor of the
conductance, GN , which is just given by the above equa-
tion with the POS be replaced by a normal metal, i.e.,
∆(k̂) = 0.

3 Results and discussion

In Figure 2a, we plot the tunnelling conductance spectra
of FM/POS junctions as a function of the quasiparticle en-
ergy E, with pair potential of the POS given by d(k̂)1, for
different values of the spin-polarization rate P of the FM.
The interface barrier strength is taken to be zero, Z0 = 0,

which corresponds to the case of a metallic junction. The
conductance is normalized by that when the POS is re-
placed by a normal metal. The left and right columns
correspond to the high temperature and low temperature
phases, while the upper and low panel correspond to α = 0
and α = π/4, respectively. We note that there are three
node directions, say, x−, y−, z−directions, respectively,
for the high temperature phase of d(k̂)1, while there are
two node directions, say, y− and z−directions, for the low
temperature phase of d(k̂)1. First, it is found that the
subgap conductance is suppressed with increasing of the
spin-polarization rate P for all cases. Especially, the zero-
bias conductance is suppressed from 2 (which is known
as ZBCP, resulting from Andreev reflection of the tun-
neling electrons) for P = 0 to 0 (disappearing of ZBCP)
for P = 0.999, where P = 0 and 0.999 correspond to
the FM of normal metal and nearly half-metallic ferro-
magnet cases, respectively. The suppression of the subgap
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Fig. 3. The same as in Figure 2, except for the pair potential of the POS is given by d(k̂)2.

conductance is resulted from suppression of the Andreev
reflection process with increasing of P . As is known that
the ferromagnetic exchange energy gives rise to the mis-
match between the wavevectors of spin-up and spin-down
quasiparticles, which, is just the reason that leads to the
suppression of the AR process, and the larger mismatch
between the wavevectors of different spins (the larger P ),
the much suppression of the AR process will be got, until
the AR is totally suppressed for the half-metallic ferro-
magnet neighboring case. On the other hand, the quantita-
tive suppression of zero-bias conductance may be used to
deduce the spin-polarization rate of the neighboring FM,
from experimental viewpoint [25–27]. Secondly, the resid-
ual conductances within the energy gap, as well as their
different energy-dependent behaviors between the upper
(α = 0) and low (α = π/4) panels, giving information on
the anisotropic pairing property of the superconducting
energy gap of the POS, which may be used as compari-
son for experimental results. In Figure 2b, plotting are the
tunnelling conductance spectra for a variety of values of
the interface barrier strength Z0, with P = 0 taken. Here,
it is found that the subgap conductance is suppressed with

increasing of Z0, which, in effect increases the mismatch
between the wavevectors of quasiparticles with different
spin directions, and consequently leads to the suppression
of the AR process, too. On the other hand, we note that
the decreasing behaviors of the zero-bias conductance are
different: it is decreasing but remaining a peak shape with
the increasing of P in the up panel of Figure 2a, while it is
decreasing and actually developing into a dip shape in the
low panel of Figure 2a and in Figure 2b, where the later
is called zero-bias conductance splitting [12], which may
be a signature of an opening gap of the POS. Moreover,
it is also found that for both high and low temperature
phases of d(k̂)1, the tunnelling conductance spectra have
the same zero-bias values for same P , while they are differ-
ent in the energy gap associating with different anisotropic
pairing symmetries of the POS. Parts of the results of ref-
erence [7] are reproduced.

In Figures 3a(b) and 4a(b), we plot parallel results as
in Figures 2a(b), for pair potentials of the POS given by
d(k̂)2 and d(k̂)3, respectively. It is found that the main
features of the P and Z0 dependence of the tunnelling
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Fig. 4. The same as in Figure 2, except for the pair potential of the POS is given by d(k̂)3.

conductance remain as in Figures 2a(b): increasing P or
Z0 will lead to suppression of the sub-gap conductance,
under the same physical explanation. However, the line
shapes of the sub-gap conductance spectra are different,
indicating different anisotropic pairing properties, as well
as different nodal structures, of the pair potentials. For
example, for the high temperature phase of d(k̂)2, there
are two node directions, say, x and y-directions, and there-
fore four point nodes on the Fermi surface, while there are
only one node direction and two point nodes for the corre-
sponding low temperature phase. So it is much anisotropic
for the pair potential of high temperature phase than that
of low temperature one. In the upper panel of Figure 3a,
where α = 0, it is found that the sub-gap conductance is
fairly flat with increasing of E/∆0, while it develops into
a U line shape for larger P (P = 0.8 and 0.999). However,
in the low panel of Figure 3a, where α = π/4, the sub-
gap conductance becomes much sloping, and turns into
a V line shape for P = 0.999. Moreover, we find that it
is much sloping for the conductances in left column than
those in the right column, indicating the much anisotropic

for the pair potential of high temperature phase than
that of the low temperature one. In the upper panel of
Figure 3b, a large enhancement of the conductance oc-
curs at E/∆0 = 1 with increasing of the barrier strength
Z0, at the same time it is largely suppressed to a U line
shape inside the sub-gap. However, in the low panel where
α = π/4, the conductance is only damply enhanced at
E/∆0 = 1 and is suppressed to a V line shape inside the
sub-gap with increasing Z0 for the high temperature phase
(low-left), while for the low temperature phase (low-right)
it is only slightly flopped inside the sub-gap, and the peak
height at E/∆0 = 1 is slightly reduced, with respect to the
case of α = 0 for the low temperature phase (up-right).

For pair potential candidate of d(k̂)3 given by equa-
tion (5), as stated above, its high temperature phase
is a linear combination of three d-wave gap functions,
which is of cubic symmetry with six point nodes and is
highly anisotropic, while the low temperature phase is an
anisotropic s+id-wave pair potential with two point nodes
in y-direction. In the left column of Figure 4a, it is found
that the tunnelling conductance is suppressed to a V shape
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for E/∆0 < 0.5 with increasing P , and has a inflexion at
E/∆0 = 0.5. For the low temperature phase in the right
column, the sub-gap conductance is fairly flat with in-
creasing of E/∆0 and is suppressed to a U line shape with
increasing P . For the case of different interface barrier
strength Z0 in Figure 4b, in the left column first, it is
found that the zero-bias conductance is largely enhanced,
i.e., ZBCP occurs, with increasing of Z0, indicating the
formation of bound states at E = 0. Again, a inflexion
occurs at E/∆0 = 0.5. For the low temperature phase
with α = 0, as shown in the upper-right of Figure 4b, the
sub-gap conductance is suppressed to a U shape and a
peak occurs at E/∆0 = 1, with increasing of Z0. While
in the low-right of Figure 4b, the conductance is generally
suppressed except a peak occurs at about E/∆0 = 0.5,
with increasing of Z0, indicating the formation of bound
states inside the sub-gap. The nearly vanishing conduc-
tance at about E/∆0 < 0.75 for Z0 = 5 (or P = 0.999),
of the low temperature phase of d(k̂)3 with α = 0, is con-
sistent with reference [7].

4 Summary

In summary, we have theoretically studied the tunnelling
conductance spectra of FM/POS junctions, where FM is
a ferromagnetic metal described by an effective single-
particle Hamiltonian for spin-polarized electrons, while
POS is the recently found nonmagnetic and heavy fermion
unconventional superconductor, whose superconductiv-
ity is described by three possible candidates of pairing
symmetry of the superconducting energy gap. We have
discussed the spin-polarization effects on the tunnelling
conductance spectra, with respect to different strength of
ferromagnetism of the FM and different strength of the
interface barrier. Different features of the tunnelling con-
ductance spectra were got, which may serve as useful the-
oretical comparisons for future experiments.

This work is supported by the National Science Foundation of
China (Grant No. 10225420).
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